Problem 67 (Cont.)

b) \[\Delta H_f^\circ (\text{rxn}) = \Sigma \Delta H_f^\circ (\text{prod}) - \Sigma \Delta H_f^\circ (\text{react.}) \]

\[= 2 \Delta H_f^\circ (\text{NH}_3) - [\Delta H_f^\circ (\text{N}_2) + 3 \Delta H_f^\circ (\text{H}_2)] \]

\[= 2(-46.19 \text{ kJ/mol}) - [0 + 3(0)] \]

\[= -92.38 \text{ kJ/mol} \]

Problem 68

a) \[\text{H-H} + \overset{\text{H}}{\text{H}} = \overset{\text{C-C}}{\text{H}} \rightarrow \overset{\text{H}}{\text{H}} - \overset{\text{C}}{\text{C}} - \overset{\text{H}}{\text{H}} \]

\[\Delta H_{\text{rxn}} = \Sigma (\text{bonds broken}) - \Sigma (\text{bonds formed}) \]

\[= \text{H}(\text{H-H}) + 4 \text{H}(\text{C-H}) + \text{H}(\text{C}=\text{C}) - \left[\text{H}(\text{C}-\text{C}) + 6 \text{H}(\text{C-H}) \right] \]

\[= 436 \text{ kJ/mol} + 4(413 \text{ kJ/mol}) + 614 \text{ kJ/mol} - [548 \text{kJ/mol} + 6(413 \text{kJ/mol})] \]

\[= -124 \text{ kJ/mol} \]

b) \[\Delta H_f^\circ = \Sigma \Delta H_f^\circ (\text{prod}) - \Sigma \Delta H_f^\circ (\text{react.}) \]

\[= -84.68 - [0 + 52.30] \]

\[= -136.98 \text{ kJ/mol} \]

The two values are in reasonably good agreement. However, they don't agree exactly because bond enthalpies are averages over many different compounds. They cannot be used to calculate exact \(\Delta H_{\text{rxn}} \) values, but they can be used to obtain a reasonable estimate.

Problem 73

If the ions were just touching, the distance between nuclei would be

\[d = \text{Radius (Na}^+\text{)} + \text{Radius (Cl}^-\text{)} = 0.97\AA + 1.81\AA = 2.78\AA \]

\[d = 2.78 \times 10^{-10} \text{ m} \]