55b) % mass 'H which can be attributed to the electron

\[\frac{\text{Mass } e^-}{\text{Total Mass}} = \frac{5.486 \times 10^{-4} \text{ amu}}{1.0078 \text{ amu}} = 0.05444\% \]

Problem 68

a) Calcium sulfide \rightarrow CaS
 Calcium hydrogen sulfide \rightarrow Ca(HS)_2

b) Hydrobromic acid \rightarrow HBr
 Bromic acid \rightarrow HBrO_3

c) Aluminum nitride \rightarrow AlN
 Aluminum nitrite \rightarrow Al(NO_2)_3

d) Iron (II) oxide \rightarrow FeO
 Iron (III) oxide \rightarrow Fe_2O_3

Problem 73

a) All of the α-particles would be expected to have passed through the gold foil with very little change in their momentum (velocity and direction).

b) That almost all of the mass of an atom (the protons and neutrons) is concentrated in a very small region of the atom (the nucleus).

Problem 74

a) γ-rays are not particles, they are highly energetic electromagnetic radiation (light).

b) A beta particle is an electron, its mass is 5.486×10^{-4} amu. An alpha particle is a 4He nucleus (2 protons + 2 neutrons) its mass is 4.00 amu. So that alpha particles are

\[\frac{4.00 \text{ amu}}{5.486 \times 10^{-4} \text{ amu}} = 7300 \text{ times more massive than } \beta\text{-particles} \]

The charge of each particle (α-particle = +2, β-particle = -1) will also influence the magnitude of the deflection.