Calculate $[Ag^+]$ at equilibrium when concentrated ammonia, NH_3, is added to $0.010 \, M \, AgNO_3$ to give $[NH_3]_{equl} = 0.20 \, M$. $AgNO_3$ dissociates completely. Neglect the volume change.

Assume $AgNO_3$ dissociates 100% (it is a strong electrolyte) and all the Ag^+ forms the complex ion.

$AgNO_3(aq) \rightarrow Ag^+(aq) + NO_3^-(aq)$

$$Ag^+(aq) + 2 \, NH_3(aq) \rightleftharpoons Ag(NH_3)_2^+(aq)$$

Initial:
- 0.010
- 0.22
- 0

Reaction:
- -0.010
- -0.020
- $+0.010$

New Initial:
- 0
- 0.20
- 0.010

Change:
- $+x$
- $+2x$
- $-x$

Equilibrium:
- x
- $0.20 + 2x$
- $(0.010 - x)$

$$K_f = \frac{[Ag(NH_3)_2^+]}{[Ag^+][NH_3]^2}$$

$$1.7 \times 10^7 = \frac{(0.010-x)}{(x)(0.20 + 2x)^2}$$

$$1.7 \times 10^7 = \frac{(0.010)}{(x)(0.20)^2}$$

$x = \frac{(0.010)}{(1.7 \times 10^7)(0.040)}$

$x = 1.47 \times 10^{-8} \, M$ $[Ag^+]$ at equilibrium, free $[Ag^+]$

Proof that you can ignore the x above:

$0.20 + 2x = 0.20 + 2(1.5 \times 10^{-8}) = 0.20 + 3.0 \times 10^{-8}$

$0.20 + 0.0000000030$ Significant figure (SF) rule for addition

0.2000000030 limits you to the places after the decimal (2SF)

This method is used to calculate the free ion.
This method is used to calculate the molar solubility of a slightly soluble salt in the presence of a given amount of ligand.

- What is the molar solubility of AgCl in 15 M NH₃?

 As above, Ag⁺ is involved in both the solubility equilibrium and complex ion formation.

 When you add chemical equations, you multiply the Ks.

 \[K = K_{sp}K_f = (1.8 \times 10^{-10})(1.6 \times 10^7) = 2.9 \times 10^{-3} \]

 \[
 \begin{align*}
 \text{AgCl(s)} & \rightleftharpoons \text{Ag}^+(aq) + \text{Cl}^-(aq) \\
 \text{Ag}^+(aq) + 2 \text{NH}_3(aq) & \rightleftharpoons \text{Ag(NH}_3)_2^+(aq) \\
 \text{AgCl(s)} + 2 \text{NH}_3(aq) & \rightleftharpoons \text{Ag(NH}_3)_2^+(aq) + \text{Cl}^-(aq)
 \end{align*}
 \]

 \[
 \begin{array}{c|c|c|c|c|c}
 \text{Initial} & & & & & \\
 \hline
 \text{AgCl} & 15 & & & 0 & 0 \\
 \text{NH}_3 & & 0 & & & \\
 \hline
 \text{Change} & -x & 2x & +x & +x & \\
 \text{AgCl} & (15-2x) & x & x & x & \\
 \hline
 \text{K} = \frac{[\text{Ag(NH}_3)_2^+][\text{Cl}^-]}{[\text{NH}_3]^2} = \left(2.9 \times 10^{-3}\right)\left(\frac{x^2}{(15-2x)^2}\right) = \frac{0.054}{(15-2x)} \\
 \end{array}
 \]

 \[x = 0.73 \text{ M} \]

- The molar solubility of AgCl in water is \(1.3 \times 10^{-5}\)
- Note how the solubility increases to 0.73 M
- Decreasing the concentration of free metal ion in solution by complexing it with a ligand will increase the solubility of the insoluble salt.

\[
\text{AgCl(s)} \rightleftharpoons \text{Ag}^+(aq) + \text{Cl}^-(aq)
\]

\[
K_{sp} = 8 \times 10^{-17}
\]

\[1.8 \times 10^{-10} = (x)(x)\]

\[x = 1.3 \times 10^{-5} \text{ M}\]

Note:

- AgCl in H₂O \(\Rightarrow 1.3 \times 10^{-5} \text{ M}\)
- AgCl in 15 M NH₃ \(\Rightarrow 0.73 \text{ M}\)
- Quite an increase!