Homogeneous Two-Component Polycondensation without Strict Stoichiometric Balance via the Tsuji–Trost Reaction: Remote Control of Two Reaction Sites by Catalysis

Nobuyoshi Nomura,* † Ko Tsurugi, † T. V. Rajan Babu, ‡ and Tadao Kondo †

Laboratory of Polymer Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, and Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210

Received February 10, 2004; E-mail: nnomura@agr.nagoya-u.ac.jp

The homogeneous two-component polycondensation reaction holds great historical significance in polymer science. Since many of the desirable physical properties emerge from high molecular weights, obtaining consistently high degree of polymerization (DP) is an important concern in polymer synthesis. About 60 years ago, Carothers and Flory established experimental and theoretical principles by which the extent of reaction (p) and the monomer (or functional group) mole ratio (r) govern the number-average degree of polymerization (DPn). For an ideal polymerization reaction, the modified Carothers equation2–4 (eq 1) defines the degree of polymerization. At the completion of the reaction (p = 1), eq 1 reduces to eq 2, which indicates that a stoichiometric imbalance of the two monomers should drastically depress DPn. For example, a monomer ratio of 1.0/1.1 (r = 0.91) would give oligomers of DPn = 21, and that of 1.0/1.5 (r = 0.67), a DPn of 5.0.

\[\text{DP}_n = \frac{(1 + r)}{(1 + r - 2rp)} \]
\[\text{DP}_n = \frac{(1 + r)}{(1 - r)} \]

\(p = \) extent of reaction; \(r = \) monomer ratio

Equation 2 gives the maximum attainable DPn at a certain number of r because two ultimate conditions, the absolute completion of the reaction and lack of side reactions, cannot be met. All textbooks dealing with polymer synthesis prescribe strict adherence to stoichiometric balance of the two monomers (or of the relevant functional groups) to achieve high DPn’s. This principle has ruled the homogeneous two-component polycondensation for 60 years since the original discoveries, although many notable examples deviating from it had been developed in heterogeneous systems.5,6 The reality is more troublesome because it is difficult to maintain strict stoichiometric balance between the two reagents due to side reactions, chain-transfer processes, and physical loss from the reaction medium by evaporation of monomers or precipitation of polymer segments. Thus, a general strategy for a more robust polycondensation, which is less prone to stoichiometric balance of the two monomers, is highly desirable from both scientific and commercial perspectives. A pattern of such reactions (Scheme 1) is known7–10 and those reactions are highly restricted exceptions because of the lack of generality, especially in the electrophiles. In each case, the reactivity of the two electrophile sites are electronically coupled to each other either by being on the same carbon7–9 or through a double bond,10 and the first reaction significantly facilitates the second bond formation. A more general strategy to circumvent the Carothers–Flory stoichiometric restriction would be one in which two remote reaction sites are involved and (i) both reaction sites are simultaneously activated or (ii) the reaction at one site remotely enhances the reactivity of the other.11 Neither an example nor a mechanistically credible conceptualization of these ideas has been proposed in the homogeneous polycondensation. We propose here a strategy for achieving high DPn’s without strict stoichiometric balance and provide experimental support to validate the latter mechanistic concept. Quite recently, an alternative unique polycondensation under imbalanced stoichiometry was introduced.12

Under many circumstances, coordination of transition metals to double bonds is very labile. This interaction is an initiating process of many transition metal-catalyzed reactions.13,14 A remotely placed olefin is known to assist an oxidative addition of an alkyl bromide to Ni(0), and subsequently stabilizes the Ni(II)–Csp3 intermediate15,16 (Scheme 2). Keeping such a mechanistic construct in mind, we investigated a two-component polycondensation reaction via the palladium-catalyzed allylic substitution reaction17 (Tsuji–Trost reaction13,14,18) without strict stoichiometric balance. The strategy which involves a remote cascade double allylation is illustrated in Scheme 3. After the first allylic substitution, 3 is formed, in which Pd(0) holds in coordination to a double bond. Ligand exchange with the remote double bond of the allylic-X gives 4. The olefin–Pd(0) complex 3 should be sufficiently stable so as to prevent from dissociation to a free olefin and Pd(0), but labile enough to consistently undergo ligand exchange with the remote double bond to give 4. If the oxidative addition of the substrate to Pd(0) in 4 (path b) is much faster than dissociation of Pd(0) from this complex, subsequent C–C bond formations will ensue. Path a−1 should also be suppressed to facilitate the propagation step. Thus if the exclusive remote cascade double substitution can be achieved, an excess of the electrophile will not have an influence on the DPn values because the deficient nucleophile will keep existing at the polymer...
The polycondensation was catalyzed by 1 mol % of Pd(dba)$_3$ (5 mol%)–2.0 mol % of 1,4-bis(diphenylphosphino)butane (10 mol%) in the presence of 3.0 mmol of N,O-bis(trimethylsilyl)acetamide in CH$_2$Cl$_2$–DMF (9/1, 1.0 mL). The mole ratio of electrophile/nucleophile. The E or N value “1.0” stands for 0.50 mmol; for example, E/N = 1.5/1.0, 0.75 mmol of the electrophile and 0.50 mmol of the nucleophile were used. Determined by SEC. Each DP$_n$ value was calculated using M_c by SEC and the molecular weight of the repeating unit. Not isolated. A crude reaction mixture was analyzed by SEC. The DP$_n$ value was 5.0 ± 0.5 by 1H NMR. Some amount of an insoluble material was obtained.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Electrophile (X = COOPh)</th>
<th>Nucleophile (E = COEt)</th>
<th>E/Na (DP$_n$ by eq 2)</th>
<th>Polymer (E = COEt)</th>
<th>Isolated yield, %</th>
<th>M_c^c</th>
<th>M_n/M_c^c</th>
<th>DP$_n$d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>CH$_2$E$_2$(6)</td>
<td>1.0/1.0 (–)</td>
<td>97</td>
<td>16,000</td>
<td>1.5g</td>
<td>–</td>
<td>110</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1.5/1.0 (5)</td>
<td>98</td>
<td>14,000</td>
<td>1.5b</td>
<td>800</td>
<td>1.7g</td>
<td>60^</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1.0/1.5 (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CH$_2$(COMe)$_2$</td>
<td>1.5/1.0 (5)</td>
<td>822</td>
<td>13,000</td>
<td>1.3c</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1.5/1.0 (5)</td>
<td>99</td>
<td>14,000</td>
<td>1.5g</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1.5/1.0 (5)</td>
<td>99</td>
<td>16,000</td>
<td>1.4g</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1.0/1.0 (–)</td>
<td>95</td>
<td>32,000</td>
<td>1.5b</td>
<td>270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1.5/1.0 (5)</td>
<td>94</td>
<td>41,000</td>
<td>1.5g</td>
<td>340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>2.0/1.0 (3)</td>
<td>96</td>
<td>41,000</td>
<td>1.5g</td>
<td>340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1.0/1.5 (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>X</td>
<td>X</td>
<td>1.5/1.0 (5)</td>
<td>97</td>
<td>13,000</td>
<td>1.4g</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>X</td>
<td>X</td>
<td>1.5/1.0 (5)</td>
<td>92</td>
<td>10,000</td>
<td>1.7g</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

a The polycondensation was catalyzed by 1 mol % of Pd(dba)$_3$ (5 mol%)–2.0 mol % of 1,4-bis(diphenylphosphino)butane (10 mol%) in the presence of 3.0 mmol of N,O-bis(trimethylsilyl)acetamide in CH$_2$Cl$_2$–DMF (9/1, 1.0 mL). The mole ratio of electrophile/nucleophile. The E or N value “1.0” stands for 0.50 mmol; for example, E/N = 1.5/1.0, 0.75 mmol of the electrophile and 0.50 mmol of the nucleophile were used. Determined by SEC. Each DP$_n$ value was calculated using M_c by SEC and the molecular weight of the repeating unit. Not isolated. A crude reaction mixture was analyzed by SEC. The DP$_n$ value was 5.0 ± 0.5 by 1H NMR. Some amount of an insoluble material was obtained.

Supporting Information Available

Scheme of the remote double activation, experimental details, and analytical data of the polymers in Table 1. This material is available free of charge via the Internet at http://pubs.acs.org.

References

11. See the Supporting Information for details.