Planning your isothermal titration calorimetry (ITC) experiment

Preparing the samples

- Buffers for macromolecule (M) and ligand (L) must be identical to minimize ΔH from dilution
 - If both M and L are large, dialyze simultaneously into same buffer using separate dialysis vessels
 - If L is too small to be dialyzed, use the “dialysate” (post-dialysis buffer) to dissolve solid ligand
 - The pH of both solutions should be checked in this case
- Reducing agents: DTT is not recommended; substitute with β-mercaptoethanol or TCEP if possible
- If DMSO is required, either include it in buffer during dialysis or add it to M, L and buffer post-dialysis
 - A difference in [DMSO] between M and L will yield large ΔH from dilution and obscure binding data
- Measure concentration post-dialysis and pre-dilution when preparing sample for experiment
 - For accurate dilutions, use analytical scale to measure mass of added volume instead of using a pipet
 - Tip: keep a large stock of concentrated M and L from which many ITC samples can be prepared via dilution with matched buffer (keep these stocks pure → only take, do not add)

Sample requirement guidelines

- (M) Macromolecule (in cell)
 - VP-ITC → 2.5 mL per run (cell holds 1.8 mL); iTC200 → 400 μL per run (cell holds 280 μL)
 - Extra volume facilitates loading and can be used later (concentration should be re-assessed)
 - [M] = 1-10×K_d
 - If K_d is unknown, aim for 10-100 μM
- (L) Ligand (in syringe)
 - VP-ITC → 700 μL per run (syringe holds 250 μL); iTC200 → 70 μL per run (syringe holds 40 μL)
 - [L] = 10-15×[M]
 - Use greater [L] as [M] is reduced closer to K_d (maximum [L] ≈ 15×[M])
- (B) Buffer matched to buffer in M and L via dialysis
 - 20 mL per run
 - Tip: save 1L of filtered buffer post-dialysis

Equipment required

- Solutions: M, L and Buffer
- Tube to hold M for loading: VP-ITC → 2.5+ mL tube; iTC200 → 1.5 mL tube
- Tube to hold L for loading: VP-ITC → 1.5 mL tube; iTC200 → 0.2 mL PCR tube
- Tube to hold M+L post-experiment: VP-ITC → 4 mL ITC tube; iTC200 → 1.5 mL tube
- Pipet and tips for sample transfer: 1000 μL and 200 μL
- Data can be transported via USB (Internet connection is not available)
- Lab notebook

Time required

- 30-60 min to set up each run (extra 60 min for training)
- 3-6 hours per run (it is automated, so this can be done in the absence of experimenter / overnight)

Multiple experiments required for maximum information content

- The first experiment will likely not be maximally informative – plan to repeat it
- Different temperatures (VP-ITC and iTC200 ranges 2-80° C)
 - Temperature can affect binding affinity ΔG, enthalpy ΔH, entropy ΔS and experimental S/N ratio
 - Change in heat capacity ΔC_p can be obtained via temperature-dependence of ΔH
 - Example: try 25°C, then 15°C then 35°C
- Different c-values at each temperature
 - $c = n[M] / K_d$ where n is the number of binding sites per macromolecule M
 - This affects shape the shape of the thermogram
 - Varying the c-value is important to probe for multiple binding modes
 - Example (if $K_d = 5$ μM and n = 1)
 - $c = 5 \rightarrow [M] = 5K_d / n = (5)(5 \mu M) / 1 = 25 \mu M \text{ and } [L] = 10[M] = 250 \mu M$
 - $c = 50 \rightarrow [M] = 50K_d / n = (50)(5 \mu M) / 1 = 250 \mu M \text{ and } [L] = 10[M] = 2500 \mu M$